3.105 \(\int \frac{\text{csch}^2(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx\)

Optimal. Leaf size=134 \[ \frac{\tanh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}-\frac{\coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}-\frac{\text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

[Out]

-((Coth[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(a*f)) - (EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x
]*Sqrt[a + b*Sinh[e + f*x]^2])/(a*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (Sqrt[a + b*Sinh[e +
f*x]^2]*Tanh[e + f*x])/(a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.148971, antiderivative size = 134, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3188, 480, 12, 492, 411} \[ \frac{\tanh (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}-\frac{\coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}-\frac{\text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)} E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right )}{a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}} \]

Antiderivative was successfully verified.

[In]

Int[Csch[e + f*x]^2/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

-((Coth[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(a*f)) - (EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x
]*Sqrt[a + b*Sinh[e + f*x]^2])/(a*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (Sqrt[a + b*Sinh[e +
f*x]^2]*Tanh[e + f*x])/(a*f)

Rule 3188

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\text{csch}^2(e+f x)}{\sqrt{a+b \sinh ^2(e+f x)}} \, dx &=\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac{\coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}+\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{b x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{a f}\\ &=-\frac{\coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}+\frac{\left (b \sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1+x^2} \sqrt{a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{a f}\\ &=-\frac{\coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}+\frac{\sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{a f}-\frac{\left (\sqrt{\cosh ^2(e+f x)} \text{sech}(e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{a f}\\ &=-\frac{\coth (e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f}-\frac{E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac{b}{a}\right ) \text{sech}(e+f x) \sqrt{a+b \sinh ^2(e+f x)}}{a f \sqrt{\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac{\sqrt{a+b \sinh ^2(e+f x)} \tanh (e+f x)}{a f}\\ \end{align*}

Mathematica [C]  time = 0.514988, size = 150, normalized size = 1.12 \[ \frac{2 i a \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} \text{EllipticF}\left (i (e+f x),\frac{b}{a}\right )+\sqrt{2} \coth (e+f x) (-2 a-b \cosh (2 (e+f x))+b)-2 i a \sqrt{\frac{2 a+b \cosh (2 (e+f x))-b}{a}} E\left (i (e+f x)\left |\frac{b}{a}\right .\right )}{2 a f \sqrt{2 a+b \cosh (2 (e+f x))-b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[e + f*x]^2/Sqrt[a + b*Sinh[e + f*x]^2],x]

[Out]

(Sqrt[2]*(-2*a + b - b*Cosh[2*(e + f*x)])*Coth[e + f*x] - (2*I)*a*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*Elli
pticE[I*(e + f*x), b/a] + (2*I)*a*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a])/(2*a*f*
Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 0.079, size = 189, normalized size = 1.4 \begin{align*} -{\frac{1}{a\sinh \left ( fx+e \right ) \cosh \left ( fx+e \right ) f} \left ( \sinh \left ( fx+e \right ) \sqrt{ \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}\sqrt{{\frac{b \left ( \cosh \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a-b}{a}}}b \left ({\it EllipticF} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) -{\it EllipticE} \left ( \sinh \left ( fx+e \right ) \sqrt{-{\frac{b}{a}}},\sqrt{{\frac{a}{b}}} \right ) \right ) +\sqrt{-{\frac{b}{a}}}b \left ( \cosh \left ( fx+e \right ) \right ) ^{4}+ \left ( \sqrt{-{\frac{b}{a}}}a-\sqrt{-{\frac{b}{a}}}b \right ) \left ( \cosh \left ( fx+e \right ) \right ) ^{2} \right ){\frac{1}{\sqrt{-{\frac{b}{a}}}}}{\frac{1}{\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x)

[Out]

-(sinh(f*x+e)*(cosh(f*x+e)^2)^(1/2)*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*b*(EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),
(a/b)^(1/2))-EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2)))+(-1/a*b)^(1/2)*b*cosh(f*x+e)^4+((-1/a*b)^(1/2)
*a-(-1/a*b)^(1/2)*b)*cosh(f*x+e)^2)/a/sinh(f*x+e)/(-1/a*b)^(1/2)/cosh(f*x+e)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}\left (f x + e\right )^{2}}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(csch(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\operatorname{csch}\left (f x + e\right )^{2}}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(csch(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}^{2}{\left (e + f x \right )}}{\sqrt{a + b \sinh ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)**2/(a+b*sinh(f*x+e)**2)**(1/2),x)

[Out]

Integral(csch(e + f*x)**2/sqrt(a + b*sinh(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}\left (f x + e\right )^{2}}{\sqrt{b \sinh \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(f*x+e)^2/(a+b*sinh(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(csch(f*x + e)^2/sqrt(b*sinh(f*x + e)^2 + a), x)